Amino acid covariation in a functionally important human immunodeficiency virus type 1 protein region is associated with population subdivision.
نویسنده
چکیده
The frequently reported amino acid covariation of the highly polymorphic human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein V3 region has been assumed to reflect fitness epistasis between residues. However, nonrandom association of amino acids, or linkage disequilibrium, has many possible causes, including population subdivision. If the amino acids at a set of sequence sites differ in frequencies between subpopulations, then analysis of the whole population may reveal linkage disequilibrium even if it does not exist in any subpopulation. HIV-1 has a complex population structure, and the effects of this structure on linkage disequilibrium were investigated by estimating within- and among-subpopulation components of variance in linkage disequilibrium. The amino acid covariation previously reported is explained by differences in amino acid frequencies among virus subpopulations in different patients and by nonsystematic disequilibrium among patients. Disequilibrium within patients appears to be entirely due to differences in amino acid frequencies among sampling time points and among chemokine coreceptor usage phenotypes of virus particles, but not source tissues. Positive selection explains differences in allele frequencies among time points and phenotypes, indicating that these differences are adaptive rather than due to genetic drift. However, the absence of a correlation between linkage disequilibrium and phenotype suggests that fitness epistasis is an unlikely cause of disequilibrium. Indeed, when population structure is removed by analyzing sequences from a single time point and phenotype, no disequilibrium is detectable within patients. These results caution against interpreting amino acid covariation and coevolution as evidence for fitness epistasis.
منابع مشابه
Amino Acid Covariation in a Functionally Important Human Immunodeficiency Virus Type 1 Protein Region Is Associated With Population Subdivision
The frequently reported amino acid covariation of the highly polymorphic human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein V3 region has been assumed to reflect fitness epistasis between residues. However, nonrandom association of amino acids, or linkage disequilibrium, has many possible causes, including population subdivision. If the amino acids at a set of sequence s...
متن کاملDengue virus type-3 envelope protein domain III; expression and immunogenicity
Objective(s): Production of a recombinant and immunogenic antigen using dengue virus type-3 envelope protein is a key point in dengue vaccine development and diagnostic researches. The goals of this study were providing a recombinant protein from dengue virus type-3 envelope protein and evaluation of its immunogenicity in mice. Materials and Methods: Multiple amino acid sequences of different i...
متن کاملAmino Acid Sequence Analysis of Hemagglutinin Protein of H9N2 Isolated from Broilers in Tehran in 2007
Background and Aims: Since 1998, Iranian poultry industry has been affected by avian influenza (AI) virus, subtype H9N2. The association of high mortality and case report of H5N1 and H9N2 influenza virus in wild birds in recent years raised the suspicion of a possible new genetic modified AI virus. Methods: Partial nucleotide sequences and deduced amino acid of hemagglutinin (HA) genes of 4 H9...
متن کاملFunctional and Physical Consequence of Human Immunodefficiency Virus Transactivator TAT Interaction with Human Cell Cycle Regulator p53
Human immunodeficiency virus (HIV) transactivator Tat is a potent activator of both viral and cellular genes. Tat has also been implicated in the development of AIDS-related malignancy. Here, we show that Tat physically and functionally is able to sequester the cell cycle check point protein p53. This sequestration results in non-functional promoter activity of cyclin-dependent kinase/cyclin i...
متن کاملMutational sensitivity patterns define critical residues in the palm subdomain of the reverse transcriptase of human immunodeficiency virus type 1.
We have analyzed 154 single amino acid replacement mutants within a 40 amino acid region (residues 164-203) of the reverse transcriptase (RT) from human immunodeficiency virus type 1 (HIV-1). This region consists of two antiparallel beta-strands (strands 9 and 10) flanked by two alpha helices (E and F). The structure of this region of the 'palm' subdomain is conserved in a variety of DNA and RN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 182 1 شماره
صفحات -
تاریخ انتشار 2009